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Multifluxon Dynamics in Driven 
Josephson Junctions 

Albert Lawrence, ~ Nung Soo Kim, ~ James McDaniel ,  2 and Michael Jack 2 

The dynamics of fluxons in a long Josephson junction driven by time-varying 
nonuniform bias currents are described by a generalization of the sine-Gordon 
equation. This equation has solitary wave solutions which correspond to current 
vortices or quantized packets of magnetic flux in the junction. As with the sine- 
Gordon equation, multifluxon solutions may be demonstrated for the long 
Josephson junction. Our numerical calculations show that several fluxons may 
be launched or annihilated at the end of a junction. We also show multiple 
steady state conditions which correspond to one or more flux quanta trapped in 
the junction. 

KEY WORDS: Josephson transmission line; solitary wave; fluxon; sine-Gor- 
don equation; numerical model. 

1. PHYSICS OF THE LONG JOSEPHSON JUNCTION 

Although a number of configurations are possible, a Josephson junction is 
most often fabricated as a thin dielectric layer (30-100 A) separating two 
superconductorsJ ~) Because of the formation of Cooper pairs, the electons 
in a superconductor share a common phase. ~1'2) The phase, current, and 
voltage across the dielectric in a Josephson junction are given by the 
Josephson relations: 

~o/~t = 2e V/h (1) 

J = Jc sin(cp) (2) 

where ~0 is the phase, Jc is the critical current, and V is the voltage across 
the junction. (1'2) A Josephson junction is called a Josephson transmission 
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line or long Josephson junction if the length of the junction is large in com- 
parison to the coherence length. The coherence length 2j is given by the 
formula 

) , j  = ( h c 2 / S g e d J e )  1/2 ( 3 )  

where c is the speed of light, e is the electron charge, and d is the total 
magnetic penetration depth. (1) 

Under proper conditions, discrete packets of magnetic flux (fluxons) 
may be caused to propagate along the junction. These packets, induced by 
minute current vortices, behave as solitary waves, and exhibit particlelike 
properties./1'3-15) The nonuniform current flow may be related to a dif- 
ference in Josephson phase, ~o(x, t), across the junction or to a nonuniform 
magnetic field B(x, t) within the barrier region. We follow Fulton's 
treatment. (3 

In order to derive the evolution equations for the Josephson phase, we 
first relate the phase and voltage by means of a contour integral as in 
Fig. 1. We assume that the superconductors are thick in comparison to the 
penetration depth of the magnetic field and that the portion of the contour 
parallel to the barrier is placed beyond the penetration depth of the 
magnetic field in the superconducting electrodes. In this case, the only 
significant contribution to the integral is over the portion of the curve 
which crosses the barrier. In particular, 

V ( x 2 ) -  V(xl)  : d~/dt  (4) 

where ~ is the flux linking the curve. Integrating over time we obtain the 
relation 

~o(x2) - r  = 2zcr162 (5) 

Fig. 1. 

._L ~ e d g e  
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Cross section of a Josephson junction. Penetration depth = . Contour  of integration 
is between x and x, k is current parallel to junction. 
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Taking the limit as x2 approaches Xl, and noting that the magnetic field is 
confined within the barrier region we obtain 

#q~/Ox = (2zM/q~o) By (6) 

where d = 2 + t. The magnetic field By(X, t) induces currents as shown in 
Fig. 1. Letting k(x, t) denote the current density, we have 

k = By/#O (7) 

Using Eqs. (5) and (6), we see 

ak/ax = (2~dpo/~bo) - 1 ~2~o/ax2 

= Jc sin(~o ) + a V + (Co 1c/t)(0 V/Ot) + ledge 

= Jc sin(~p) + (aqbo/2n) Qcp/Ot + (Co ~C~o/2nt) ~2~o/~t2 + ledge (8) 

We may rewrite Eq. (8) in the form presented by Fulton (3): 

Kt ~2~o/0x2 = Jc sin(~0) + Dt ~3~o/at + Mt c32qg/Ot 2 + [~l (9) 

where Jc = critical current density, Ix~ = bias current density, Kt = ~bo/2nLl, 
Ll=inductance  (per unit length), Mt=~boCt/2n, Dl=wq~o/2n, and 
Ct = capacitance (per unit length). 

The dynamics of in a Josephson junction may be described by a sine- 
Gordon equation with additional terms for dissipation and driving 
currents. Generally, time and space variables are normalized so the 
equation becomes 

9x~ - q~. - sin(cp) = ~r - 7 (10) 

(See Refs. 10, 13, and 15.) Additional dissipative terms may be added to the 
equation. The effects of surface impedance, given by a term -P~0xx,, are 
investigated in Refs. 11, 12, and 14. Although the general features of mul- 
tifluxon dynamics reported in those references are similar to those given by 
Eq. (10), fluxons tend to "bunch" (11) rather than to repel one another. 
Assumption of a quadratic dissipation term [gtl 2, rather than the linear 
dissipation terms, permits an analytic solution for steady state fluxon 
propagation (9) and produces qualitative agreement between the model and 
experimentally observed current-voltage curves for long junctions. 

Because dissipation terms are generally small in magnitude, many of 
the most interesting properties of freely propagating fluxons are closely 
related to the properties of soliton solutions of the pure sine-Gordon 
equation.(8) The literature associated with the pure sine-Gordon equation is 

822/39/5-6-8 
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quite extensive. Reviews may be found in recent books by Lamb (16) and by 
Dodd, Eilbeck, Gibbon, and Morris. Ilv) Solutions of the pure sine-Gordon 
equation may be found by separation of space and time variables. (16) 
Generalizations of this technique yield multisoliton solutions which may be 
expressed in terms of the Jacobi theta functions (18) and the Riemann-theta 
functions.(19 23) Solutions for the sine-Gordon equation generalized to two 
or more spatial dimensions are also given in terms of the Riemann theta 
functions. (19 23) An alternative approach to multisoliton dynamics is 
through inverse scattering theory. O6A7"24) 

Experimental evidence of fluxons in Josephson junctions is also exten- 
sive. Reported work includes observation of zero-field steps in the 
current-voltage characteristics of the junction, (9"13 15,25) measurement of 
millimeter wave radiation generated by fluxons reflecting from the ends of 
the junction, (11'26-28) obsrvation of fluxons by laser scanning, (29) and direct 
measurement of the voltage pulses induced by propagating f[uxons. (5'6'3~ 

Applications for the long Josephson junction to both analog and 
digital circuitry have been proposed in the physics and engineering 
literature. The analog applications include use of the long Josephson 
junction as a high frequency oscillator. One or more fluxons repeatedly 
reflecting from the ends of a long junction constitute a source of millimeter 
and submillimeter wave radiation. 14'26'2~'32 35) Although reported power 
levels are presently one microwatt or less, (2.) radiation linewidths and tun- 
ing ranges make the long Josephson junction oscillator an attractive device 
for future development---especially in the 200-1000-GHz range. (26) Long 
Josephson junctions may also be fabricated in a ring configuration. (5) These 
devices have been proposed as accelerometers. (36) 

Several applications to digital logic have also been proposed. 137 39) The 
long Josephson junction may be used as a three-terminal device having the 
analogs of the source, gate, and drain of a transistor./4~ Voltage 
amplification factors in this device may approach 100 or better. Single 
fluxons may also be transmitted as bits of information in circuits based on 
Josephson transmission lines. Several architectures based on Josephson 
junction processors have been proposed for digital memories and 
processors. (38,39) 

2. THE T R A N S M I S S I O N  LINE M O D E L  

The model of Erne and coworkers may be easily generalized to the 
case of nonuniform junction parameters. We assume that the quantities R~, 
Ct, Lt, J~, and Ix~ in the Fulton model (3) are replaced by functions R(x), 
C(x), L(x), J(x), and I~(x, t). The continuous case with spatially varying 
parameters may be approximated by a simple network, as in Fig. 2. 
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Fig. 2. (a) Lumped circuit approximation for a long Josephson junction. JF is field-induced 
current, Je.J is bias current. (b) Fulton model for point junction. C is junction capacitance, R 
is resistance (to quasiparticle tunneling), J sin(cp) is the supercurrent. 

In this figure, Ri, C~, L i, and Jr represent the lumped characteristics of 
the ith segment (of length x). The quantity JB,~(t) represents the total bias 
current applied to the ith segment, and JF(t) represents the effect of a 
uniform magnetic field. Although this model represents an overlap 
junction, as in Fig. 3a, trivial modifications serve to represent an in-line 
configuration, or the effects of nonuniform magnetic fields, which might be 
induced by control lines. The equations for this model are a generalization 
of the equations of Erne and Parmentier~33): 

C ( d V t / d t )  = (~o/2gL2)((p2 - ~01) - V J R  1 - J~ sin(~0~) + YB, i + I e  

C( d V ] d t )  = (@d2~z)[(1/Li) ~o~_ ~ - (1/L~+ ~ - 1/L~) ~o~ 
(11) 

+ (1/L~ +1 ) (Pi+I ] - -  V ] R i  - Ji  sin(q~) + Je, i 

C ( d V N / d t )  = (~bO/2rCLN)(q)N ~ -- ~ON) -- V N / R N  -- JN sin(q)N) + JB,N -- IF 

In these equations N represents the number of junction segments in the 
model. These equations may be derived from the Josephson relations 
[Eqs. (1)] and the current and voltage balance equations for the network. 
An alternative approach would be to discretize the spatial variable in 
Eq. (9), using standard difference approximations for the spatial 
derivatives. Both procedures yield the same results. For purposes of 
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Fig. 3. Generation and propagation of a single fluxon. Junction parameters are as in the text. 
Horizontal axis represents distance along the junction, while voltage and time are superim- 
posed on the vertical axis. Horizontal traces are at 1-psec intervals. A current pulse having 
maximum amplitude 3.8 times critical current density is applied to the first two nodes at 
beginning of the record. Pulse shape is trapezoidal, 10 psec linear increase, 10 psec at 
maximum, and 10 psec decrease to bias. Bias current is 0.6 times critical current density at all 
nodes and at all times except when initial current pulse is applied. A field-induced current at 
0.9 times critical current density is assumed at the first and last nodes (see Fig. 1). A, 
Application of current pulse; B, fluxon is accelerated to limit velocity; C, fluxon reflects from 
end of junction. 
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numerical computa t ion ,  we set N =  200 and used the junct ion parameters  
R i = 2 0 s  C i = 1 0 - 1 2 F ,  L i = 6 x 1 0 - i 4 H ,  and J i = 1 0 - 4 A .  These 
parameters  correspond to characteristics readily achievable in 2 # x 2/1 
lead-lead oxide tead junctions.  

The bias current  was the only independent  variable in the model. 

1 

NOD ~: 

50 

E 

C 

B 

A 

100 

Fig. 4. Generation and propagation of a train of three fluxons. Model parameters as given in 
Fig. 3, except current pulse maximum is 5.0 times critical current density. A, current pulse; B, 
formation of three fluxons; C, D, E, fluxons reflect from ends of junction. Note that fluxons 
emerge from interactions without change in shape. 
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Various functions for bias current input were selected during the course of 
our computations, as will be described in the next section. The resulting 
equations, with time- and space-varying bias currents, were solved 
numerically on a VAX 11/780 computer, using the code developed by 
Shampine and Gordon./42~ 

0 200 

NODES 

Fig. 5. Generation and propagation of a "lump" containing 32 fluxons. Note that all but 16 
fluxons are lost through dissipative processes at the ends of the junction. This model differs 
from the one used for Figs. 3 and 4 in that junction length is 400 k~ (200 nodes). 
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3. R E S U L T S  

Single fluxons, multiple fluxons, and "lumps" containing large num- 
bers of flux quanta may be induced by application of current pulses to the 
end of a junction. Figures 3 through 5 are records of the voltage across the 
junction. Each trace is separated by 1 psec. Figure 3 shows a single fluxon, 
Fig. 4 three fluxons, and Fig. 5 a shock-wave containing 32 fluxons. In each 
case, the bias current pulse was applied to the first two nodes about 10 psec 
after the beginning of the record. Except for the period of 30 psec, during 
which the fluxon-inducing current pulse was applied, the bias was main- 
tained at 0.6 times the critical current density along the entire junction. 

Generally, individual fluxons in a train of fluxons tended to remain at 
least 25 # apart, as may be seen by reference to Fig. 4. Furthermore, the 
trailing fluxons in a train were seen to lag, as may also be seen in Fig. 4. 
The lagging of the trailing fluxons seems to be more pronounced if larger 
numbers of fluxons are present in the junction. This may be seen by com- 
paring Figs. 4 and 5. If more flux quanta were introduced at the end of the 
junction than the junction could accomodate at 25 # separation, the sur- 
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Fig. 6. Relation between input current pulse and number of fluxons produced. Horizontal 
axis is maximum current density normalized to critical current density. Vertical axis is phase 
difference between the right and left ends of the junction divided by 2. Phase difference is 
measured 50 psec after cessation of input current pulse. 
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Fig. 7. Trapping and release of a single fluxon. A: Establishment of a negative bias on center 
section, nodes 50-59 of the model. Magnitude of the current is 3.0 times critical current den- 
sity. Bias on remainder of the junction is as in Fig. 3. B~C: Current pulse. D: Single fluxon is 
trapped at center section. E: Negative bias is reversed to +0.6 times critical current density. F: 
Fluxon reflects from end of junction. 
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Fig. 8. Interaction of a trapped and a propagating fluxon. A-D:  See Fig. 7. E-F:  Second 
current pulse. G: Second fluxon collides with trapped fluxon. H: Fluxon emerges at right side 
of trapping section and reflects from end of junction. I: Second fluxon collides with trapped 
fluxon again. J: Fluxon emerges at left side of trapping section. Process continues indefinitely. 
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plus flux quanta were lost at the opposite end of the junction. This may be 
seen in Fig. 5. 

We also obsrved that under the constant bias current condition single 
fluxons accelerated to a limiting velocity and the associated voltage pulse 
increased to a limiting amplitude. This is predicted by the perturbation 
theory ~7) which gives the formula 

v~ = [1 + (4~/~7) 2] ~/2 (12) 

Fig. 9. Trapping multiple fluxons. W: Negative bias established on nodes 90-110 of the 
model. Magnitude of bias current is 3.0 times critical current density. P: 50-psec current pulse, 
at 60 psec after beginning of record. Pulse is administered to first five nodes of the model, and 
is trapezoidal, lO-psec increase, 30 psec at maximum, 10-psec decrease. Bias on junction is 0.6 
times critical current density, except at initial section during current pulse, and at center 
negative bias section. Five fluxons are produced and trapped at center of junction. Note 
oscillations which scatter from negative bias section during collision of fluxons. 
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The lagging of the trailing fluxons during the time interval when they are 
leaving the end of the junction seems also to be a result of this relation. 
This is because bias currents are effectively reduced near the end of the 
junction after the lead fluxons in a train have reflected from the end of the 
junction. 

The number of fluxons generated by a current pulse is not generally a 
linear function of the current delivered. Figure 6 shows the number of 
fluxons generated under various conditions. The relation is approximately 
parabolic. 

We have also observed that one or more fluxons may be trapped by a 
region of negative bias. Figure 7 illustrates the capture and release of a 
single fluxon, while Fig. 8 shows the interaction between a fluxon trapped 
at 100 psec and a second fluxon which is induced by a current pulse 
100 psec later. Although the pattern of interaction is rather complex, the 
second fluxon propagates through the first. This was verified by calculating 
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Fig. 10. Phase difference between ends of junction during process shown in Fig. 9. Horizon- 
tal axis is time, vertical axis is number of fluxons in the junction (phase difference across the 
junction divided by 2). The number stabilizes at five fluxons, after scattered oscillations dis- 
sipate. 
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of the time-varying magnetic field (not shown). The length of the section 
over which the bias current is applied is 20/~, and the magnitude of the 
negative bias is 3.0 times critical current density in both cases. 

Increasing the length of the section over which the negative bias is 
induced makes trapping of several flux quanta possible. Figures 9 and 10 
show the voltage along the junction, and 1/2 times the phase difference 

Fig. 11. Production of 11 fluxons by current pulse, followed by loss at junction end. W and 
P mark the same events as in Fig. 9 except that current pulse is 19.0 times critical current den- 
sity. Note that several fluxons propagate through junction before dissipating to the right of 
the trapping section. 
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between the ends of the junction. As may be seen from Fig. 10, five flux 
quanta are produced and remain on the junction. Figures 11 and 12 show 
the result of inducing seven fluxons. Five are trapped, and two are lost at 
the end of the junction. The loss seems to be a function of the total momen- 
tum of the flux, because Figs. 13 and 14 show that at least ten flux quanta 
may be trapped, if they are produced five at a time. In each of these cases 
the negative bias current section is 60 # and the magnitude of the current 
density is 3.8 times critical. 

One interesting aspect of a long Josephson junction which emerges 
from the numerical calculations (as exemplified by Figs. 9-14) is that it can 
have multiple stable states. This is distinguished from the case of a system 
with pure sine-Gordon dynamics which, because its solitons repel one 
another, cannot have a multisoliton stable state. 
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Fig. 12. Phase difference between ends of the junction during process shown in Fig. 11. 
Record stabilizes at five fluxons. 
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Fig. 13. Trapping fluxons in two stages. W and P1 represent the same process as in Fig. 9. 
P2: A second pulse is applied to the junction, at 100 psec after first pulse, generating an 
additional five fluxons. 

4. D I S C U S S I O N  

The findings of main significance in this numerical study center around 
the trapping of flux at a region of negative current bias. Because trapped 
flux corresponds to a stationary state of the phase function, capacitative 
and dissipative currents are zero. This implies that the only currents in a 
stationary state are supercurrents along the electrodes and across the 
barrier. The inductance of the counter electrode is much greater than of the 
base in the overlap geometry chosen for our study. For  this reason, trapped 
flux corresponds to increased currents parallel to the junction in the coun- 
ter electrode. In particular, the trapping of one or more fluxons moving 
from the left results in a larger current entering the left boundary of the 
negative bias section. Thus, the number  of fluxons which could be trapped 
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Fig. 14. Phase difference record corresponding to the process of Fig. 13. Note that a total of 

ten fluxons are trapped at the center of the junction. 

at the negative bias section is limited by the current which can enter the 
junction in the left positive bias section, or by the current which can leave 
the junction in the negative bias section, whichever is smaller. One may 
may make rough estimates of the upper limit by noting that the total 
Josephson current traversing the junction in the positive bias section will 
not generally contribute a significant portion of the current flowing along 
the counter electrode into the negative bias section. 

The precise solution of the problem is to find all solutions of the 
equation 

~0xx = s in(rp)-  7 (13) 

subject to the constraints 

fo [sin(q~) - 7] = dx 0 

(I/2~z) q~x dx = O, 1 ..... n 

where n may be the upper limit calculated from the bias current. 

(14) 



580 Lawrence, Kim, McDaniel, and Jack 

If we have found a solution to Eq. (11), then a small perturbation, 6q), 
will satisfy the equation 

U~x - u .  = u cos(~o) + c~ut (15) 

where u ( x ,  0)=  6q~. This shows that small disturbances tend to be damped 
out, so stationary solutions are stable. 

The structural perturbation theory of McLaughlin and Scott predicts 
the trapping of fluxons by microshorts. (7) This study has shown that 
fluxons may also be trapped by regions of negative bias current. In 
addition, fluxons may be created or annihilated at the ends of a junction by 
control of the bias currents. These phenomena are susceptible to practical 
application, as suggested by Likharev e t a / .  (41) and Nakajima e t  al. (38) 
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